实数分割定理?

1个月前 (12-27 19:32)阅读2回复0
看看头条
看看头条
  • 管理员
  • 注册排名1
  • 经验值1821909
  • 级别管理员
  • 主题364381
  • 回复2
楼主

实数分割定理?

解析函数中,对实数定义大意是,先从自然数出发定义正有理数,然后通过无穷多个有理数的集合来定义实数;现在通常所采用的是戴德金和康托的构造方法。

戴德金方法称为戴德金分割,是将有理数的集合分成两个非空不相交的子集A与B,使得A中的每一个元素小于B中的每一个元素。戴德金把这种划分定义为有理数的一个分割,记为(A,B)。因为不存在有理数X使得X的平方等于2,戴德金说,考虑一个不是由有理数产生的分割(A,B)时,就得到一个新数,即无理数a,这个数是由分割(A,B)完全确定的。

实数分割定理?

因此,戴德金就把一切实数组成的集合R定义为有理数集的一切分割,而一个实数a就是一个分割(A,B)。在这一定义中,由一个给定的有理数r产生的两个实质上等价的分割被看成是同一的。

0
回帖

实数分割定理? 期待您的回复!

取消